Betting on drones as smart agricultural tools for pesticide use in farms

Drones could soon be adopted as essential tools for various agricultural tasks; however, with respect to their use in farm management, research is still lacking. To address this issue, researchers in Japan compared drones to well-established technologies for spraying pesticide over rice paddy fields.

Using statistical data, the researchers explore both advantages and limitations of drones and whether they currently offer an edge regarding costs, capacity, and management efficiency.

“Following recent technological demonstrations and verifications at field sites, there is an increasing need for farm management research of smart agricultural technology including cost and efficiency analyses; this is essential for its implementation in farms,” explains Yuna Seo, who is Junior Associate Professor at Tokyo University of Science, Japan.

In an effort to address this knowledge gap, Seo led a recent study published in MDPI’s
Sustainability
in which she, with her student Shotaro Umeda, compared different pesticide spraying technologies using realistic data.

More specifically, the researchers evaluated and compared the costs, working capacity, and management efficiency of drones versus remote-controlled (RC) helicopters and tractor-mounted boom sprayers for preventively spraying pesticides over rice paddies. They made these comparisons for seven different paddy field areas to take into account differences in scale for each method.

In terms of pest-control costs, the UAVs were only slightly less expensive per unit area than the boom sprayers, mainly due to the low price of drones and savings in fuel. In this regard, the RC helicopters were much more expensive.

“Although the purchase cost of boom sprayers is almost double that of UAVs, the fixed costs of both end up being similar because of the high operation, maintenance and repair costs of drones, which are notorious obstacles in UAV introduction and adoption,” remarks Seo.

As for the working capacity, RC helicopters could cover much more area per hour than both drones and boom sprayers. Still, drones had a slight advantage in daily area coverage over boom sprayers.

Finally, to explore the management efficiency of each method, the researchers used a technique called “data envelopment analysis,” which is widely used in economy and operations management to benchmark the performance of manufacturing and service operations.

The results indicated that both boom sprayers and UAVs reached
maximum or near-maximum efficiency for most paddy areas, while RC helicopters
were much less efficient.

Overall, this study showcased the benefits of drones as tools for rice production and compared them to other well-established technologies.   But, the use of drones in agriculture is not without limitations, which should be addressed in the future, such as the modification of aviation laws that forbid higher pesticide payloads on drones, as well as maintenance costs.

“The total costs and efficiency of UAVs would be comparable to that of boom sprayers, which is not a hindrance for farmers wanting to switch to drones. Therefore, technological advances and deregulation are necessary to expand the use of UAVs while meeting safety measures and ensuring applicability,” explains Seo.

In conclusion, this study highlights both the advantages and limitations of using drones as agricultural tools. Still, there is no doubt that smart agriculture as a whole could greatly alleviate the labour shortage problems in countries with a rapidly ageing population, of which Japan is a prime example.

Using a menthol-like compound to activate plant immune mechanisms

Certain chemicals can activate the innate defence mechanisms of plants, and researchers at the Tokyo University of Science are working on ways to use such chemicals as alternatives to harmful agricultural pesticides.

These researchers have found that a compound derived from menthol can boost the expression of defence-related genes in soybeans, corn, peas, and other crop species. This finding may pave the way to green agricultural technologies that shield crops from pests while minimizing damage to the environment.

Professor Gen-ichiro Arimura of the Tokyo University of Science, Japan, notes that “the development of agricultural technology to date has been largely reliant on the use of pesticides and chemical fertilizers, which has resulted in
environmental pollution and the destruction of ecosystems.”

As a greener alternative to pesticides, terpenoid signalling molecules may help farmers continue their production of vital foodstuffs while lessening the associated environmental costs.

In pursuit of this goal, Prof. Arimura and his colleagues chose to investigate the terpenoid compound menthol, which is derived from mint leaves and can activate plant immune
systems. The aim of this project, which the researchers describe in an article recently published in the journal Plant Molecular Biology, was to develop compounds that are structurally similar to menthol but improve upon menthol’s ability to activate
plant immune systems.

The researchers therefore experimented with chemically modifying menthol by attaching amino acids, which are a structurally diverse set of compounds that living cells use to construct proteins. In total, the researchers synthesized six different menthol derivatives with attached amino acids.

The researchers then tested the resulting menthol derivatives to see whether the modified compounds could outperform unmodified menthol at activating plant defense mechanisms. To do this, they treated soybean leaves with either menthol or one of the six menthol derivatives to see which of the derivatives, if any, could outclass menthol itself at boosting the expression levels of two defense-related soybean genes after 24 hours of exposure. The found that only one of the modified compounds bested menthol, and this compound
is called valine menthyl ester, or “ment-Val” for short.

The researchers found that spraying soybean leaves once with a ment-Val solution boosted expression of the defence-related genes for three days, and second spraying on the fourth day worked to boost the expression of those genes again.

These findings suggest that ment-Val could provide sustainable pest control for farmers growing soybeans. Further experiments showed that ment-Val also increased the expression of defence-related genes in other crops, including peas, tobacco, lettuce, and corn. Ment-Val also proved to be quite stable under various conditions, which suggests that farmers would probably not lose the compound to degradation during storage.

Overall, these results suggest that ment-Val could be extremely useful as an alternative to the chemical pesticides that so many farmers rely on. Prof. Arimura notes that spraying ment-Val may be an effective way “to reduce pest damage to soybeans and other crops.”

He has applied for a patent on ment-Val’s use as a crop protection agent, and he predicts that the commercialization of ment-Val “will generate billions of yen in economic benefits through its usage by companies operating in the fields of horticulture and agriculture.”

He also notes that ment-Val’s anti-inflammatory properties could make it useful for human medicine.